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Abstract P

This paper treats the propagation of slectromagnetic waves
n the interior of a wavsguide which is fillsed with a moving madium. Tha
modium is assumed to be homogensous, isotropic, and lossless, and to movae
with a constant velocity along tha axis of the waveguide. The Maxwell-
linkowski equations for the electrnmégnetic fields are solved by means cf
a pair of vector potential functions similar to those frequsntly used for
stationary media, The fields inside the waveguide are dqfived for both
rectangular and cylindrical waveguidses.

The well=known cutoff phenomenon for a waveguide is found t2 be
modified in an interesting way when the medium inside the waveguide is
movinge The results show that for a slowly moving medium ( a medium for
which nF < | » whers n is the index of refraction and F is the velocity
of tha madium divided by the valocity of light im vacuum) there are two
critical frequencies, esparating thres frequency ranges in seach of which
there is a different type of propagation. For a hiéh-apeed medium (rzp > 1)
it is found that there is no cuto?f phenomenon ai. sll, although therse
is one critical frequsncy aeparatihg tuo fraqu%ncy ranges in which the

propagation is different.
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In this psper we shall.consider the propagstion of electromagnetic fields
in the interior of a rectangular or cynramcal wzveguide which is [illed with
a moving medium. The medium is assumed to be homo;eneous, isotrovic and lossiess,

with constitutive parameters u and €, and to move at uniform velocit'y

along the axis of the waveguide, The waveguide is assumed to have perfectly
conducting walls and to be infinitely longz. A similar problem has been done
by Collier and Tai,‘ under the assumption that tho velocity of the medium is
much smaller than that of light. In this paper, we shall ireat the case where
the velocity of the medium can have any value up to the velocity of light.

The purpose of the paper is to show how the familisr Wcutoff" phenomenon for a
waveguide is modified when the medium inside is movinge. This effect is not

apparent when the velocity of the medium is assumed to be small.

Development o tnc Thacry

The electromsgnetic fields inside the waveguide are governed by Maxwell's
Zquations, JXE = - '—B—Eb | )
ot
| viid=: 224 T Gy
| v.B=¢ | (3)
V-% =0 4

which, asg we lmow from the special theory of relativity, are valid for any

: . . o e ey T 2 R
medium, moving or stationary. In Zgs. (i, and (2) s and H are the electric
and magnetic field intensities, D and B are the electric and magretic flux

densities, and all quantities are messured in a ccordinate system which is

stationary relative to the walls of ihe waveg
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The effect of the moticn of tha mcdium is ta alter ths
constitutive ralations from - thoss that would apply for a
stationary mediume The modified constitutive relations for‘a uniformly
moving medium were Pirst darived correttly by Minkouskisz)-and hig results _
y Taigg) The result is
LL% H &y
AxE ()

where . 2 '
o= D82 (1)
((“‘fxllg2> C |
[ e -
A . ()
_v
? T e (7)
¢c = - l — velocity of light in vacuum ({0)
{ o €0 |
— q o O .
7185 ()
| -g*
a= (i

and /M)é = the permeability and permittivity of the
medium (as measured in a frams attachsd to the medium). Substitut:i.on
of Eqs.{5) and (6) into (1},(2),(3), and {4) yields ths NMaxwsll~

‘Minkowski equations for the moving istropic medium. They are

Vxé—:—a‘%[})iﬂ.—f\.XE : (13
VY W= J + :;E X:;(x. E + 5L Xl ] (\Qb
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with J and Y considered a&s scurces, For harmonically oscillrting fields
—wt '

with a time dependence €  these eauations may he converted vo

(V+ L'w.FL) ¥ E = L‘w/u z. -I: : | (17)
(V{'L'«J_FL);( H :—-Cwezo:(.E | . (i 3)
(veiwm): (eZ.E)= p a7 (m

(V+éo_ﬁ)o[/u§.ﬂ) = 0. 20).

These equations are quite similar to those for a stationary medium excepi, for

the substitution of the operator

—

D =V FlwsL (:21)

!

for the nabla operstor  and the appezrance of the term SL*d.
Two types of potential functions will be introduced to describe the
electromagnetic fields in the waveguide. Assuming there are no sources, we set
i

= = = — LY ,
\):ﬁ:o, Since D,-’D.xw =0 for any vector ) we may write

)
wd o H'= D x A ()

i

where the superscript e denotes © field compoz;ents of the electric type.

Substituting Eq. (22) in EBq. (I7) gives

= =e _ 1, N — '

D, x (E - lwh) = O. . (23)

—_— + %
Alsosince D, x DU =0 for any scalar function U.) we may setl

= e . - oy . ‘

E = twA- D WU “Lyl

If we define another vector function AI such that ‘
. <

#ore precisely, D, Y, XW=z= O for any veetor W whose compenon s
have continuous second partial derivatives. |

s 6,)( :b‘lu\,:O




and impose thse gauge relation

—

— ¥ 2 i '
Die A= wwpea WU (26)
betwsan A‘ and U s it is net difficuli to show in terms of carteslan

coordinates that A, has to satis?y tha squation

——

(Da D)/—/}\‘ +k A‘ [27)

whare — -
) Da= Vot 22100 (29)
AD A Al d
Va= X5 TV 5y TFaI% (29)
—————‘—1 V
k= w 4}46 . (369
Equation (27), when written out, reads
& B 2 w 't Ive .
S B - I R C e thal Ay=0 @GY)

9% oy’ X322 Ta Jz o«

The field vactors are then given in terms of A' as '

I

od

where o ' is. the inverse of « .

A similar procedure cen be fcllowsd to find ths esguations

———

satisfied by the potential functions v ‘and \/ associated with

——

»“ Tym
fields E; and ‘4 of magnstic typs. Tha rssult is givan as

VD (& F’ﬂ (34)

—— — D\ ”D;'*'AB » -
el - 2

Lw/Mé-Q

follouss
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where I end Fﬂ are related by
T.z.0 | (36)
i

b—

{
=
t

The gauge condition imposed on and V is

D,.F= twueaV. (37)

1:\ hae to satisfy the sama equation as /\‘ .

The field soluticn in the waveguids ocan be divided into
two basic modes, TE and Tie For TH modes, the field components
— A _
can be derived from an elsciric vector potential function A=2 A .

For TE modes, the field cocmponents may ba darived from a magnatic vector

- oy A —— w—
potential F=2F . For this particular case where A and [ have

only one component in ths z-direction, ws hava

e 7 = x e ’A /5 O
A‘ZZ}A‘: 2. A= A=z A (38)

— —— = AT '
—FA;QP;:;&!?;F;TL}— (3?)

The Rectanqular Wavequids

The appropriats solutions for A and F which satisfy the
boundary cénditions for the waveguide configuration shown in

Figure 1 are

( Pur Flaure 1 N HEKE‘)J
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!  hz .
1 - - ~ et ™ i ;
‘ P:’%'}T:ZE%S LZ:,'(COS ’L‘uye (z”) Y
Substituting (40) or (4() into (31) we find
oo wfL E  KaP- klPa (“42) |

where ‘ - = 2. ’ .
e ) s

¢ Ko yo
Each set of integers m and 1 corresponds to a given mode.which will be dssigned
as the Tﬂﬂﬁ(WI h.‘;) modes., The expressions of the electric and magnetic

field vectors for the T modes may be obtained from A by means of Egs. (32)

: and (33 ). They are ‘Ao(h"‘*-’—n-\) Wi Ly X ¢ e etl‘lb (‘{{4)
1 - = me———— — oS t— m o— :
i CX wu e a® Xo - > Ko Yo }l l :
: A : { ~
E/: M )/ <M"")‘<"xw5_ye € (45
w e gt > .
— . AL% -
EZ’ = A [ (n#w"L) Jsan V:.‘L X sin & Y e (46)
fa/uca Xo . >
— Ao I“T' W o :L% (47)
Hx - /Ua yo "k"; X W 70 Y & 'L
Ay m7T mTT v far the (qg)
= 22 Bl s Dl sm £y e
' M), e K oS X X m.__/,, /
The fields for TE modes may be obtained {rom F by meens of Egs. (34—; ard (357,
with th t S :
@ resul E - _‘P.f_ ,0_1_1' ws Vf_: X Sin @__:."7 e L\z (.{‘1&_)
X ea Yo * o L -
- - \ 77? ing )
= :*Q%Sin?waéﬁ\/e (s0)
7 €q o °
ux = .F;‘)(t\d"w;") i S:V\ gx oS Q.lry O‘L% [5‘>
w/.kéa?' Xo e °
- . : \
—_ To g‘\*‘*)?) »f_:_f"_\. o3 ﬁx&m/gﬁ‘\/ G.L:‘- (52)
Hy = wueat ¥, Xo 7o ,
. b3 :
P R ey, Ty e e'Lq’ (53)
1. = fo{w t Cos X co3 /
1 z_ 'o l‘&y“efd?‘ X )e _,
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The Cvlindrical Waveguide

The proper form of Asnd F Cor the cylindrical waveguide shown in Fig. 2
may be writien as — A A — oS A - | e
A:ZAzonJm(k’(,J\\ 5;“W=<]Se i(é”?
— = AT T | os he PR
FoAT =2 W Jmlkan) o md e (55)
. |

— N n oo - :
where J_(ka) is the Bessel function of integral order m. 4 and T satisfy (21)
which in cylindrical coordinates becomes

Lo D Dt
A NI R
AIRTVR T RiDgt X8z a9z«

o
-
i
.

h is given by the same expression shown in (42) wnile kc is given as

i m Q 4 .4 o " - ay )
Ro = L/l (T modes) [57)
o
/
! W\j; o \

= f} T modes £ -

Re - (12 / (.2g
(> H
hooTS ot The y . ' :
where ymidenotes the Eessel functiong and 4 . Génotes the roots of the Cerivative
. i

93 ( v - :
of the Bessel functions __aﬁ”_s.): O Tane subscripts m and 1 denote, respectivedy,

(L) .

. - i
LG compL

the order of ithe Bessel function &nd the index of the root..

[

expressions of the electric and magnetic field vectors for the Ti modes are
|

- _ ‘?c Ao {(hiw ) ddm '?kj__)_ (o5 W\Sl{ 8;1‘.1 I (5‘!)
AT wmea® alkeny 7 ) T
. |
A _w {’m—soj\-:l { - Sin f/ 4112 1{ N
- __c'___’___——-—-—"' — i S )
E(p X w/ueaz /LJMuC,m) CLmg e }1 |
ad : Z = Nz 3
. (hreT T / co$ (/ﬁ W
Ei_'-: Ao o™ (:Ol_i\\TMw(h‘) Sin 7 ¢ {
W Ao i - ATR Y l(\-?; )
lble-— :F },‘C\' E\jm(k’th> s Sg A i\.( Ia
_ i AU G |

z : 1,2 '
| 07  Riwil D (O—-O-_‘_hl A)_C o
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Tha field componants of the Ti modes are:

o S " :
En:i: #—Z: /%‘ ‘? h) ) M}A \{\2- (C:f.‘
c, = kc,E ':)\‘.'_‘-m'(‘;'(,’l.) @5,“?4 e'«L\%- (653
¢ € a alk ) S
H - kc\:g('nfmﬂ) A\’IM(“Z(;\\) cogmsz' eaLZ‘ (66
AT wueqt dlen) s .
- Taw (wroa) 1 .sm 2 (67)
“’¢ = i w/ue o jL ( (1\> ?A e
' (1 t 4 > ‘L-?; )
o (rww,-u.) '),‘. /1 cos ¢ e (¢8)
= A i dm W n) T om
H% E[L@'ﬁ' ('w/uéaz_j C Sunm

The Vsvepuide Parameters

The formula and the conclusions diven in this section apply to both
rectangular and cylindrical waveguides (or to a waveguide with any othe

cross-sectional geometry if R is appropriately Cefined). kc will assume the

c -
‘ or(ba)
value given in (43) for rectangular woeveguides and in (b?)/\for cylindrical

waveguides. The propagstion constant Ii is given in (42). When the

velocity of the moving medium is small so that n3< ). cut off will ocecur
: f

if T

\ezq L .‘QL (e4)

and hence the cut off frequency is
{ \
' R
7[ = — C'J’vzl(l-—él). {70)
c PATYY J}Xoéo J—-‘——-—l;}‘—_‘"
-n

- - A .
wnen f is less than f the fielas are attenuated strongly along the gu

but unlike an ordmary wavegulde below cutoff, there is a '~ pnase velocity
“p el in the negative z-direction, for btoth solutions. When £ is slighily
greater tﬁan fc there is no atterration, but the two waves both have phase
velocities in the-z~direction (but they have dillcrent phase velocities),

Finally if f is large enough so ihst
2 1 z z
- )'(ZCG - g’,\’g G 2 & ——Q_ (7/)

whicin ¢an be manipulated to the Cornm
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than waves can propagate in either cdirection witheout atienuatlion,

but again with . : different phase valocities. If v=0, then

U NG U

/3 =0, and we have

i
i
|

" k’Q . ( N

7(; = %c = Q7T‘¢ii§; . ’7J>.
which is the usual cutoff fraquency in the osiatlonary casse. |

When v\p > 1, @ will ba nsgative while —w{iL is positivi.
In this case thers will ba no cutof? phenomencn at all. Af low |
frequencies, the term contributed by the squars root in £q.{42)
predominates, so the phase veslocities of ths two waves are in o
opposita directions, At higher fregusncies ~wil is always greater
than the square root, so both waves have phaso velocities in the

+2 directione The transiticn between thaese two casas cccurs at

[

Ne
7[_‘)(‘ - 2m g e, ni-gr (74)

N /——kgz
Ws note that the relation ﬂ{ﬂ?\ is the concition for Cerankov

radiation in the medium. A summary of thess resulis is prassnted

in Figure 3. \(Fur TilGure 3w 1+E&E?Zj

There ars an infinite number of modocs which can exist
¥
in ths waveguids but for a given Trequency cnly a finits number of

them can propagate freely, assuming the velccity of the maedium

in the waveguide is small, sc that H;B( | « Howsver, if the

valocity of the medium is large sncuch so that nfﬁ) { , then all

@odae can propagate freely at any frcquency, For the case ?\B < ] s
~ i

sevaral paramsters can ba sxprossed in terms o thse cutoff frequency:

o
ke = ani dpce -5
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(l n/&)c / , .
hz-wn =+ Law, h] ("})z]‘/:: (7‘

! f I/L( ({0

L folp w1

where W, =TT c o for 7[>/f » thse guides phase valocity and guids
<

wavelength are respectively

(7-‘? (‘nﬁ>¢/{lﬂ)/’i:hx'15)[‘ "‘ i’"/}); ‘h
by = = 0200 i ente - (“W’

where (= | /i—= and X is the fres space wavelength. Ths Ti
Jo O Y/,Q

characteristic wave impedance for the wave travelling in ths

+2 direction is

)
i~

(ractangular waveguides)

™ E[ E
. A
Zml = =T _'Z_
u-y LT)(
- En E - e
) H - TI— (cylindrical waveguides) 5 Ls
- ¢ " .
— 1 +w L . ‘\v/kzaz‘-‘ k’(,dq ' }
= = Z [24
oo © oo (ng [ or n[_bl )

< 8T (1[_&7,& : ([
w L }L(,)..; Cnpel ana Gep ) 0
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characteristic wave impedance (for the +z wave) is also given by

equations (82) and (83), which for this case yield

(S

ZTE_ Lpa o wug
mt h+wdl
2
\/—'IQL“;,LW

]
& "/
7‘[}‘( ‘j; )2;] % (V\F({ and §7¥C) (68

(“}/ﬁ(l or n{&)l) (673

‘1-7/2- ;
’ - -‘ . f - [ et
Lwc\z [“- ; (v.!.oc\ and TQR) L0

l'

M i = < !
It is interesting to note that the product zwg Zmﬁ -:.1 = % at all
T - TE
Arequencies and for all velocities of thc medium, ya and £ as ziwven
r (88) and (84) me e

in (85) ard (8¢) are of the same form as when the medium in the weveguide is
N N
¥

stationary. The power [low in the rectangular wrveguide for T rcdes is

Xe Yo
| — 1% _f\
| — —x s Yo 2 2 nrwil ’
P-‘:Qz"j ExH eadz lei Re L2, .3 (bl ez wmpy]) ‘e
A ) J 2 €y 605 M €a ( i
I '."._75/
NV D U L O Sl l
— ~ (nf<| ) (41
L € Coy a‘;u V& l ’

where éo,Q is defined as equal to 1 when =0 and equal to 2 whan. { > O.

*

For T2 modes it ia

Yo Yo ke 1el™ bl (npe 81 ) |
= . { or m : (o
')\eow‘ €oq w/" 626‘3 / ‘ |
212 ] r\e [
SR T oA L R (A b
= :t.—oyo' - /i‘)] (nf< 1)

2 €om Eos ale Jue'
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In cylindrical waveguides the correspording expressions are

-l
_wallA) . i hew L .

27"/

L, 1t A2 = (L ¢

= :tf.n_ﬁ_lﬁi‘_.[jl— T (en) J [‘ re/f) ] (nf<t) (45)
2 éom - LY 5y qz/b( W

for ™ rodes and

R PWL = AP

122 '
____ivkknofpll [‘— khzv‘ :)::(len [l—(h/)c ] (pe) G

QQ‘OM ¢ No Qzé HE
for TE modes. Although the phase velocities rre as shown in fig 3, the power
flow for the two waves in the ~uide =re in each case of the s=me magnitude and
in opposite directions,
When the velocity Vv approaches zero or when the constitutive rarameters
of the medium equal those of free space Q will a“ﬁri:hch zero »nd @ will
en

approach one; all theresults obtained/\reduce to the familiar ones

for the medium at rest.
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Conclusions

From the Maxwsll-iinkowski equaticns for tha sleciromagnatic
field in a moving medium, it has been sinoun how the electromagnetic ficlds
may be constructed from a pair of vecter potential functionsrx and FZ
which are derived using a technique similar to that commonly used for
stationary mediae. The solutions fér'K and F appropriate to a rectangular
aﬁd e cylindrical waveguide have besn given, ac wsll as the formulas
for the fislds., These rssults show ths dependenca of the fields on tha
velocity of the medium insids ths waveguice.

The propagatiﬁn constant for the Ficlds iﬁ the wavsguids
has been examined to determins how the motion o the madium afiecis tho
cutoff behavior. It was found that the wall-known cutof? frequency
for a waveguide is modified when the medium insice is moving. For ,qg <,
corraesponding to a slowly moving mecdium, thers arse two éritical frequencies
{:C_ and 7C+ « For 7C'< [{_ , the fields ars attsnuated, as in a convsntional’
wavequide, but also havs é | phase vaslocity, unlike a convaentional
wavaguide. For )[‘_<{(7[+ » the fields are unattenuated but all fislds
have a phase velocity in the -z dirsctiom. For ~}:7;; y Waves may
travel unattenuated in either dirsction in the waveguids, but with a

- different phass vslocity in each direction. For n{&y I:,

corresponding to the case of Csrsnkov radiation, there is one critical
A )

s

frequency’ f__ e For F( )C_ y waves may travel with a phase vslocity

in either directione. For {:> F;_ p all soldtions have a phase velocitv

in the +z direction. Also for np > | , there is no cutoff phanoménon

in the usual senss. Waves may propagats unattenuatsd at any fraquency.
Finally, soms formulas for the waveguide charactsristic iwpedancs

. a
and for the powsr flow in a wavseguide filled with/moving medium have buen Qivon .
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